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Abstract. This article adopls a Gaussian-type propagator 10 find the exad wavefunction of a 
very general time-dependent damped harmonic oscillator with an abitrary varying mass and 
with a force quadratic in velocity under the action of an arbitrary timevarying driving force. 
The results oMained not only g e n e 6  all the known results in the literatures but can also be 
applied io many interesting particular cases. 

1. Introduction 

Recently we have discussed the invariants and symmetries for a particle with a force 
quadratic in velocity 111, and the Noether’s theorem invariants for a timedependent damped 
harmonic oscillator with a force quadratic in velocity [ZI. We have also discussed the 
propagator and exact wavefunctions of the harmonic oscillator with strongly pulsating mass 
under the action of an arbitrary driving force [3]. On the basis of these works, we shall now 
discuss the propagator and exact wavefunctions of a rather general system for a damped 
time-dependent harmonic oscillator with an arbitrary varying mass and with a force quadratic 
in velocity, furthermore, we consider this system is under the action of an arbitmry time- 
varying driving force. Since this system is very general, we can apply the results obtained 
to many interesting particular cases. 

2. Equation of motion and Hamiltonian 

The equation of motion of the above-mentioned system is 
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where 

the admissible potential V is chosen as 

the time-dependent driving force is chosen as 

M ( t )  is the arbitrary time-varying mass, o(t) is the arbitrary time-varying angular frequency, 
F ( t )  is an arbitrary time-dependent function, MO = M(O), p and y are constants. 

The Hamiltonian for such a system is found to be 

When we perform the canonical transformation: 

equation (5) becomes 

Performing further the following canonical transformation: 

we obtain the new Hamiltonian: 

n;r 1/2 
Hz=-e p z  - P ' + 2 0 2 e e 1 Q 2 + - ( Q P + P Q ) - ( ~ )  M F(t)ea'Q. 

2M0 2 4M 

In the particular case ,9 = y = 0, M ( t )  = MocosZ(ut), equation (9) reduces to equation (4) 
of 131. Details of the derivation of (9) are shown in appendix 1. 

The corresponding Hamiltonian operator of (9) is 
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3. Propagator 

We adopt a Gaussian-type propagator K to solve the time-dependent Schrodinger equation, 

K ( Q , t ;  Q O , ~ )  = A ~ ~ ~ ~ ~ - C I Q ~ - C Z Q - ( C ~ Q + C ~ ) Q O - C ~ Q ~ I  (11) 

where 

The propagator satisfies the wave equation 
a - 
a t  

iTl-K H2K. 

Substituting (11) into (13) and comparing the coefficients of the different powers of Q and 
Qo,  we obtain 

Integrating (14), we obtain (see appendix 2) 

CI = - 2iTl 
where 

s = p z  a, = Q(0). 

Substituting (20) into (15) we obtain 

Multiplying the integrating factor p sin(Q0s) exp(-(l/Z)t) at  both^ sides of the above 
equation and integrating we get 
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Substituting (20) into (17) we obtain 
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Integrating the above equation we get 

-Qo& exp(Bt/2) c, = 
%psin(Gos) ' 

Substituting (23) into (16) and integrating it, we obtain 

where 

Substituting (22), (23) into (18) and integrating it we get (see appendix 3) 

Substituting (ZO), (22) into (19) we obtain 

dt ([ (E)'" F(r)psin[Q~s(r)l d r  
Z i p 2  sin*(nos) 

+ 
Integrating the above equation we get 

x ([ e"/' ( E ) " ' F ( r ) p  sin(Qos(r)) d r  d t  T I  
In the particular case ,9 = y = 0, M(t) = Mocos2(ut), equations (ZO), (22), (23), (24), 
(26) and (27) reduce to equation (9) of [3]. 

For convenience we put 

In the particular case of 131, equation (28) reduces to equation (10) of [3]. 
Substituting (28) into (26) and (22). we obtain 



. ~ ~ 
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In the particular case of [3], equation (32) reduces to equation (15) of 131. We have also 
verified that, in the particular case of [41, equation (32) reduces to equation (2.5) of [4]. 
By the way, since (32) is derived from (13). at t = 0 the propagator K ( Q ,  0; Qo, 0) = 
S(Q - Qo) 1-51, 

4. Wavefunctions 

The wavefunctions are calculated using the formula 
m 

h ( Q ,  t) = I m d Q o  K(Q, t; Qo, O)tlr.(Qo, 0) (33) 

where +"(eo, 0) is the wavefunction for a simple harmonic oscillator at t = 0 (see appendix 
4) 

and H, is the usual Hermite polynomial. Substituting (32) and (34) into (33) we obtain 
D 112 

h(Q. t )  = (w) In ~XPIBI  Q2 + B2Q + B31 (35) 

where 

1 2 2 2  E2 = D 2 R p ( l  t i(3) E3 = - 5 D  R p (1 -F i54) 
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and 
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tl = p2sin2(nos)(l +C2) 

5'1 ( B  Q 0 c ; W  + i) 
R c 3 = c + -  - -  

Qo 2 

Letting y = ~ Q o  and using the formulae 

we obtain 

hence we get 

I, =exp(-i(n+ i)cot-'P}Hn(D(Q -,OR)}. (41) 

Substituting (31) and (41) into (35) and making some simplifications, we get 

Equation (42) generalizes the results which we obtained in [3]; it can be used to study many 
interesting particular cases. The result given in 141 is the simplest particular case. 
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Appendix 1. Derivation of (9) 

From (7) we obtain 

From (8) and (6), using (Al.l)  and (A1.2) we get 

(Al.l)  

(A1.2) 

(A1.3) 

(A1.4) 

(A1.5) 

1 M 112 (g) F(t)eB'Q+h(P).  (A1.6) Hz = - MOoze8' Qz + - p Q - 2M 2 



3996 

Comparing (A1.5) and (A1.6) we get 
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Considering the symmetrization rule [6], we write PQ or Q P  as &(QP + PQ). Hence, 
from (A1.5) or (A1.6) we obtain expression (9). Moreover, the third term on the right-hand 
side of (9) is in accordance with the corresponding expression in [7,8]. 

Appendix 2. Derivation of (20) 

Let 

b c*=c;-- 
2ia ’ 

Substituting (A2.1) into (14) we obtain 

where 

Let 

where p satisfy 

Substituting (A2.4), (A2.5) into (A2.2) we get 

2 - j = +Y + 1). 
P 

Inhoduce s and let 

-2 s = p  . 

Substituting (A2.7) into (A2.6) and integrating, we obtain 

y = cot(Qos). 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.8) 

Substituting (A2.4). (A2.8) into (A2.1) we get (20). Equation (21) is given by (A2.3), 
(A2.5) and (A2.7). 
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Appendix 3. Derivation of (26) 

Substituting (22), (23) into (18), we obtain 

- cos('&s(t)) sin[no(s(t) - s(r))]}dr. 

Letting 

and using (A2.7) we can rewrite (A3.1) as 

Integrating (A3.3) we get 

Substituting (A3.2) into (A3.4) we readily obtain (26). 

Appendix 4. Behaviour of &(Qo, 0) 

Substituting (A1.3) into 
~~ 

L2 = Q P  - Hz 

and eliminating P, we obtain 

(A3.1) 

(A3.2) 

(A3.3) 

(A3.4) 

(A4.1) 

Substituting (A4.2) into 

and using (21) we get 

d2 - (8''' Q )  + ~ ~ e @ ~ / ~  Q = 
dt2 

Since F ( f )  = 0 when t = 0, Q(0) = Qo satisfy 

Qo + niQo = 0 

i.e. +,(eo, 0) is the wavefunction for a simple harmonic oscillator. 

(A4.3) 

(A4.4) 

(A4.5) 
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