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Abstract. This article adopts a Gaussian-type propagator to find the exact wavefunction of a
very general time-dependent damped harmonic oscillator with an arbitrary varying mass and
with a force guadtatic in velocity under the action of an arbitrary time-varying driving force.
The results obtained not only generalize ali the known results in the literatures but can afso be
applied to many interesting particuiar cases.

1. Introduction

Recently we have discussed the invariants and symmetries for a particle with a force
quadratic in velocity [1], and the Noether’s theorem invariants for a time-dependent damped
harmonic oscillator with a force quadratic in velocity [2]. We have also discussed the
propagator and exact wavefunctions of the harmonic oscillator with strongly pulsating mass
under the action of an arbitrary driving force [3]. On the basis of these works, we shall now
discuss the propagator and exact wavefunctions of a rather general system for a damped
time-dependent harmonic oscillator with an arbitrary varying mass and with a force quadratic
in velocity, furthermore, we consider this system is under the action of an arbitrary time-
varying driving force. Since this system is very general, we can apply the results obtained
to many interesting particular cases.

2. Equation of motion and Hamiltonian

The equation of motion of the above-mentioned system is

L .2, 3V ;
5E+ﬁ1x+%yx2+§;=%?- - (1)
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where
M)
B —13+-*—*~M(t) )

the admissible potential V is chosen as

oV _ , 1-exp[=(§)3]
P w*(2) /2 - (3)
the time-dependent driving force is chosen as
_ M (7
feen = Foe[~(3)1] @

M(t) is the arbitrary time-varying mass, @ () is the arbitrary time-varying angular frequency,
F(#) is an arbitrary time-dependent function, My = M (0), 8 and y are constants.
The Hamiltonian for such a system is found to be

2
g P L M o pe (EW_“I) M e
2M 2 y/2 My v/2
When we perforim the canonical transformation:
e(}’/z)x —1 _
4=——p— = ©
equation (3) becomes
2
P{ g M o5 2 M Bt
Hy = e + —w?fgt — —F()efly. 7
1= 537 7 i (t)e'q Q)

Performing further the following canonical transformation:

AV M\
o-(m)'¢ »=(5) » ®

we obtain the new Hamiltonian:

P? M, M MA\V?
— —pt 0 2.8tn2 ¥ Pov— {22 pt
H, e + 5wt 0 +4M(QP+ Q) (Mo) F(HeP 0. (9)

In the particular case 8 = y = 0, M(z) = Mocos*(vt), equation (9) reduces to equation (4)
of [3}. Details of the derivation of (9) are shown in appendix 1.
The corresponding Hamiltonian operator of (9) is

N B 3 My M 3 ) M\
O om0 apga M © a9 sy (M B0,
H 5 oBQZG +2wc Q+4M(171Q8Q magg) (Mo) F(ne” Q
(10)
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3. Propagator

‘We adopt a Gaussian-type propagator X to solve the time-dependent Schrodinger equation,
K(Q,1; Q0. 0) = Aoexp[—C1 Q> — G20 — (C1:Q +C5)Q0 — 3031 (11)

where
elriDx _ 1

Q=00 =—p— 50=x0. (12)

The propagator satisfies the wave equation
a A
iha;K = K. (13)

Substituting (11) into (13) and comparing the coefficients of the different powers of ¢ and
(g, we obtain

. 2Pt
61 = ~aC+ Bpeh Lipe, o= P2 p="1 14
P My
. 1/2
- hCy = ~aCiCy + %Cz - (*ﬂ%) f"‘(l‘)(’:‘)ﬂI ‘ (15)
-t a o
—inCs = ——:1-04 (16)
o S i
—iACy = —aC|Cs + EC4 (17
i a
— G5 = ~=CaCy (18)
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ar (2 T3¢ 4) 0 (19
Integrating (14), we obtain (see appendix 2) i
Meef TQocot(Ss) o B M
Ci = p_P_M 20
T [ 2 .73 (20)

where

M M M 1 Q2
5-22 - 2 ﬁ Y- A -3 QZ — 0
(“’ T 4M2) pri¥p="s @1)

§=p Q= 2(0).
Substituting (20) into (15) we obtain
. Qpcot(208) B ,B M2 Bt ;
= 2= Sy : 2
Cim- (2D 2 Ba (5] Foe @)
Multiplying the integrating factor psin{§2s)exp(—(8/2)t} at both sides of the above

equation and integrating we get

Moefti2 s o2 M2 )
Tip SnC2S) Jo ( ) F(r)psin[SQps(r)] dr. (22)

Co =
) 7,
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Substituting (20) into (17) we obtain

Co B Dpcot(ps)

G i & =
Integrating the above equation we get
_ —QMyexp(Bz/2)
4= if1,0 sin($2ps) 23)
Substituting (23) into (16) and integrating it, we obtain
Qo
Oy =
3= 2 h ) @4
where
&) = —é— + cot(£2ps). (25)
2

Substituting (22), (23) into (18) and integrating it we get (see appendix 3)

MD F % M £/2 .
Cs = m '/l; e (E) F(t)psin[Qo(s(t) — s(z))] de. (26)

Substituting (209, (22) into (19) we obtain

dA, 2o Cot($205) f.} B
i LY L ol A LR B
4o ( 202 2p+4) i
MD dr fl B (M)I/Z . )2
ik L e —\ F Qos(z)]dr ) . 27Y
2inpzsin2(§zgs)( A A (2)p sin[Ss(7)] @7)

Integrating the above equation we get
Mogg.eﬁrﬂ 12 Mo f 1
Ag = (——) exp |:—f BTN
2xihp sin(Qps) 2t Jo p?sin®($25)
? MAV? 2
X ( f P/ (E) F(T)p sin(§s{T)) dr) dt]. (27
0 0

In the particular case 8 = y = 0, M{t} = Mycos?(vt), equations (20), (22), (23), (24),
(26} and (27) reduce to equation (9) of [31.
For convenience we put B

=Btz pt MR
R(t) = f ef/2 (-—-) F(7)p sin[Qo(s(2) — s(z)]dz. 28)
Qo Jo My
In the particular case of [3], equation (28) reduces to equation (10) of [3].
Substituting (28) into (26) and (22), we obtain

MoQoeP 2

= mR(f) 29

5

B Qpcot(Qus) .
¢, = Yor {[E _%} R+ R(t)} . (30)
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Using (30) we can rewrite (27) as

MoSoc®2 NP My B Scot(Ss) T2
Ay = [ obtloe” ™ alt prife TRV VR4 R dr. (31
° (?ﬁfiﬁﬂsin(ﬂoﬂ) °"P{2iﬁfo”° [(2 7 ) * ] Gb

Substituting (20), (23), (24), (29), (30) and (31) into (11) we get

, _ { MoQoexp(Br/2)\'*
K(@, t; 3o, 0) = (W)
MoS2\ [exp(B) [B _ 6 _ Socot(Qos) | M7 ,
“""[(m){ N [2 PR +2M]Q
2pexp(Bt) [ (B Sipcot($2s) ;
SR R ke
Zexp(Bt/2)

_ _ 2
psinm,s) (@ —pRYQo— 55

2
O I
In the particular case of [3], equation (32) reduces to equation (15) of [3]. We have also
verified that, in the particular case of [4], equation (32) reduces to equation (2.5) of [4].
By the way, since (32) is derived from (13), at ¢+ = 0 the propagator K(Q, 0; 05, 0) =

3(Q2 — Qo) [51.

4. Wavefunctions
The wavefunctions are calculated using the formula

0n@.0= [ 400K (0.1 00,0920, 0 (33)
where 1,(Qo, 0) is the wavefunction for a simple harmonic oscillator at ¢ = O (see appendix

4)
_ [ v MoSa/R 7 MO —MoS2
¥a(Q0,0) = (_Z"rzf_ﬁ) H, 200 ( 5

and H, is the usual Hermite polynomial. Substituting (32) and (34) into (33) we obtain

Qﬁ) (34)

D\
Yn(Q, 1) = (W) I, exp{B; Q% + B, 0 + B3] (35)
where
172 . 9
_ MoS29/1 +£2 « Mo . . e#2((0/p) — R)
b= ( ik ) f_m exP {_ 7 Q) [Q“ T —i‘g')isin(ﬂos)]
x H, ( Mo Qo) d0, 36)
Mgﬂoeﬁ’)uz 2
D= B =-1p%(1
( - , (1 +i22) o

B, = D*Rp(1+if3) B3 = —3D*R*p*(1 +its)
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and
&y = o7 sin*(Qe8)(1 +£7)

_ep B (B_b_ Qocot@9) M
Ez-—'{;"f'go( +2M) :

2 p?
B Sogcot(S2s)
=%+ 0(2 ——pz—+x)
2
es Q;;Rz : f peﬁr[(g_ﬂo_cig%fl)pre] & (9

Letting v = +/Mp$2 /R Qo and using the formulae

2 2 o2 'L'n
VT = H(y)—
n=0 R

fm exp[—a(x — b)) dx = \/g

T = elieor EE) (39
we obtain
Yone = (1+"§)Il4explzofg oBT [T (i I—*ﬁﬂ
R VAP o \iyTog
= Z‘;exp{—l(wz)cor’s}ﬂn{mg pR)}— (40)
hence we get
1, = exp{—itn + Lycot™ E}EL{D(Q - pR)). @D

Substituting (31) and (41) into (35) and making some simplifications, we get

D 1/2 [ ar alv/®x 1 _
T!fn(x, I) = (_—_2"n[ﬁ) H, {D [ -570_}’/——2 _PR]}
M (er/Dx _1\? M e/ _ 1
X exp Bl?u‘o( v/ ) T2 E( ) )
+ B; —i(n + 3)cot™'[£ (s)]]. (42)

Equation (42} generalizes the results which we obtained in [3]; it can be used to study many
interesting particular cases. The result given in [4] is the simplest particular case.
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Appendix 1. Derivation of (9)

From (7) we obtain

L 3H1 = Ele—ﬁ‘

8p1 M

. o H, 5 M
= —— = —Maeft — F(He.
21 52 w e g + My (te

From (8) and (6), using (Al.1) and (Al.2) we get
) M2 1 1 \2
== I T M
¢ (Mn) 73 (MOM ) !
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Integrating (A1.3) and (Al.4) we obtain
PZ

M
= a M
H, ST + 527 @P +2(0)

y 172
B = %Mngeﬂ‘gu M po- (E) F($)e” Q@ + h(P).

M M,

(Al.1)

(Al.2)

(A1.3)

(Al4)

(A1.5)

(Al.6)
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Comparing (A1.5) and (A1.6) we get

M M /2 )
20 = FF G - (35) FOFQ WP =

2
2 e ALy
0

Considering the symmetrization rule [6], we write PQ or QP as %(QP + P Q). Hence,
from (A1.5) or (A1.6) we obtain expression (9). Moreover, the third term on the right-hand

side of (9) is in accordance with the corresponding expression in [7, &].

Appendix 2. Derivation of (20)

Let

. b
C1=CI"'%.

Substituting (A2.1) into (14} we obtain
B 2
—iRCl = —aCP2 + — (92 + ‘B—)
a 4

where
M M M 1
QZ= 2__E___ -z 2.
O~ T3P

Let

C;___E(En_y+£_é) (2 = 20

Introduce s and let
§=p"2
Substituting (A2.7) into (A2.6) and inteprating, we obtain

y = cot(£2ps).

(A2.1)

(A2.2)

(A23)

(A2.4)

(A25)

(A2.6)

(A2.7)

(A2.8)

Substituting (A2.4), (AZ.8) into (A2.1) we get (20). Bquation (21) is given 'by (A2.3),

(A2.5) and (A2.7).
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Appendix 3. Derivation of (26)

Substituting (22), (23) into (18}, we obtain

3997

QoMo e [ MY ,
S = rycrwl | b2 (E) F(T)p sin[Qps(t) — Q(s(t) — sz dr
QOMO ! M /2 .
=2 | efr2 = Q -
" T st (@08) Jo ( Mo) F (z)p{sin(Qos(2)) cos[Qo(s(#) — s(z))]

— cos(Qus () sin{Qa(s(#) — s(x))1} dr.

Letting

: 172
I= f efr/? (1%) F(z)p sin{Qp(s(t) — s(z))1dz
0

and using (A2.7) we can rewrite (A3.1) as

. Mol d I 1 dr
G=% [I ar (sincszos)) + (sin(Qos)) E} '

Integrating (A3.3) we get

_ Ml
>~ sin(Qos)
Substituting (A3.2) into (A3.4) we readily obtain (26).

Appendix 4. Behaviour of v,,(Co, 0)

Substituting (A1.3) inte
L,=0QP—H,

and eliminating P, we obtain

© 2 172
Ly = ( ; MQ) %eﬁ’ - %wzeﬂ’Qz-{— (%) F(r)eP Q.

€~ om
Substituting (A4.2) into

¢ (2oL

2

dt \30,/ 80
and using (21) we get
4 M\ F(z)
& 20y 4 Q2B 20 = (_) F® g
dtz( Q) + Qe 7 A e
Since F(¥) = 0 when ¢ = 0, 2(() = Q¢ satisfy
Qo +2500=0

i.e. ¥,(Qp, 0) is the wavefunction for a simple harmonic oscillator.

(A3.1)

(A3.2)

(A3.3)

(A3.4)

{Ad.1)

(Ad.2)

(A4.3)

(Ad.4)

(A4.5)
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